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Course Program
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Contents of the chapter

e A continuous model foryield curves.

e Estimating the yield curve.

e Sensitivity of present values.



Definition of yield

e If P(t)isthe market price of a “zero-coupon bond” that pays
the risk-free amount of €1 at time ¢, its yield y is defined by
the equation:

P(t) =e ¥

e Theyield of the zero-coupon bond is defined as:

ot) =~ In (P(1))

e y(t) is called the “spot rate” or “zero rate” for maturity t.



The chicken and the egg

Note

Theyield is just a way of expressing the price.

e y(t) is also called the spot rate or zero rate for maturity t.

e the current yield curve describes the yields of notional
zero-coupon bonds of €1, due at different times in the
future.

e Current because the market price changes every day.

e Notional because there aren’t zero coupon bonds for every
maturity.



Yield curve examples
(see R script 1.Example yields.R)

Portugal -

31-12-2024 - Portugal (Source: EIOPA)

mmmmm




Discounting

e Assume that the yield curve {y(¢) : ¢ > 0} is known.

e The arbitrage-free market value of a risk-free, future
cashflow {c(t1),c(t2),...,c(tn)}is:

B — zn:P(tz) C(ti) _ Ze—y(ti)tic(ti)

1=1

e Every payment is valued separately as a zero-coupon bond.



Yields are strange

Consider this:

e The spot rate y(t) at maturity ¢ is the constant yield rate in
the interval (0, t) that reproduces the observed price P(t) of
€1 payable at time t.

e At the same time we are aware that the yield curve is not
constant!



Forward rates

e The forward rate yp(t) isthe implied yield in the
infinitesimal time interval (¢, t + dt), defined consistently
with the spot rate.

e The spot rate is the average of forward rates in the interval
(0,1).



Forward rates

e Forward rates yr(t) are defined by spot rates through the
equation

t
| wes)ds =u(e) -t
0
e Assuming differentiability, we have

yr(t) = y(t) +t-y'(t).



Annual compounding

e Letn be an integer.

e Let P(n) be the market price of a zero coupon bond that
nays the risk free amount of €1 at time n.

e Then theyield 7 with annual compounding is defined by
P(n)= (141"

e Theyield of zero coupon bonds can be explicitly calculated:

1

i=i(n)=Pn) » —1=¢e" —1



Annual compounding

Note

Recall the relationship between yield with annual compounding (z) and yield with
continuous compounding (y):

1=e%—1

y=In(1+1)




Why continuous compounding?

e Continuous compounding allows aunified and simple
notation, e.g.

P(t) = eap(~u(0) -0) = eon ( | | e (s)ds )

regardless of wether t is an integer (whole year) or not.
e |n this lecture we will use continuous compounding.

e Inthe financial press, annual and semi-annual
compounding is common.



Bonds

e Abond can be defined in general as “a promise to make a
series of payments of specified size, at specified times in the
future”.

e Let usdenote by ¢(¢;) the payment due at time ¢;, for
1=1,...,n.

e We assume that bonds have no credit risk.



Bond yield

e Let{c(t;):1=1,...,n} bethe payments stipulated by a

bond.
e Let B be the price being paid forthebond in t
e The average yield y of the bond is defined (im

ne market.

olicitly) by

Ze—ytc ) def / e V1dC(t)
0

e The average bond yield is well-defined if all payments are

non-negative.



Bond yield example

We are at the 31st December 2024. We will compute forward
rates compatible with the (continuous) assumed market yield,
the price of the bondandits yield (annual and continuous).

e Facevalue: 100

e Annual coupons: 5%

e Maturity: 5 years

e Market assumptions for Portugal by EIOPA



Coupon (%) -
Face Value w

timet spotrate price of €1 cashflows PV c.flows

0.00 0.000% 1.00 0.00 0.00
1.00 2.707% 0.97 5.00 4.87
2.00 2.930% 0.94 5.00 4.72
3.00 3.015% 0.91 5.00 4.57
4.00 3.075% 0.88 5.00 4.42
5.00 3.117% 0.86 105.00 89.85

e Bond price: 108.4179946



Yield curve estimation

Estimating the market yield curve by replication



e Assume that you know the market prices B, ..., B, ofn
different government bonds.

e Define the payoff matrix

Cl1 ... Cin Payments of bond 1

Chl --- Cpnn Payments of bond n

e Some of the ¢;; may be zero but all bonds’ total payments
must be restricted to the time points t;,...,t,.



Yield curve estimation - replication



e We construct a portfolio (w1, ..., w,) that replicates the
cash flow of a zero-coupon bond at maturity ¢;:

(wy,...,w,)C=1(0,...,0,1,0,...,0)
e The equation is solved by
(wi,...,w,) =(0,...,0,1,0,...,0)C ! = roij_l

e Then, the price of the zero-coupon bond at maturity ¢; is

P(tj) — i szz
1=1



Yield curve estimation - replication



e Theimplied zero ratey(t;) is given by solving
P(t;) = V()i
e Intheory, finding yield curves is easy matrix algebra. In
practice there are a number of problems. For example:
= Not enough traded bonds to cover all time points.
= Payments at other time points.

= Lack of long term bonds.

e |n practice you would use a software or the risk-free rates
delivered by EIOPA, Bloomberg or others.



Example - Market assumption
31/12/2024

# A tibble: 15 x 5
Bond "Mat. 31/12° "Face value "Face val. "Avg. yield

<dbl> <dbl> <dbl> <dbl> <dbl>

1 1 2025 100 0.04 0.0219

2 2 2026 100 0.04 0.0247

3 3 2027 100 0.04 0.0255

4 4 2028 100 0.05 0.0267

5 5 2029 100 0.05 0.0281

6 6 2030 100 0.05 0.0293

7 7 2031 100 0.05 0.0305

8 8 2032 100 0.05 0.0315

9 9 2033 100 0.05 0.0324

10 10 2034 100 0.05 0.0329
11 11 2035 100 0.05 0.0332



Example - Payment Matrix

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

[1,] 164 © © © © © © © © © o © o0 o
[2,] 4 164 © © © © © © © © o o 0 o
[3,] 4 4 104 © © © © © © © o o 0 o
[4,] 5 5 5 185 © © © © © © © © o o°
[5,] 5 5 5 5 185 © © © © © © © o o°
[6,] 5 5 5 5 5 185 © © © © © © o ©
[7,] 5 5 5 5 5 5 185 © © © © © o ©
[8,] 5 5 5 5 5 5 5 105 © © © © o ©
[9,] 5 5 5 5 5 5 5 5 185 © © © o ©
[10, ] 5 5 5 5 5 5 5 5 5 105 © © o 0
[11,] 5 5 5 5 5 5 5 5 5 5 105 © 0 ©
[12,] 5 5 5 5 5 5 5 5 5 5 5 105 © 0
[13,] 5 5 5 5 5 5 5 5 5 5 5 5 105 @



Example - Clean market price B

# A tibble: 15 x 6
Bond "Maturity 31.12. ..

<dbl> <dbl>

1 1 2025

2 2 2026

3 3 2027

4 4 2028

5 5 2029

6 6 2030

7 7 2031

8 8 2032

9 9 2033

10 10 2034
11 11 2035

"Face value  Coupon "Average yield annual”
<dbl>

<dbl>
100
100
100
100
100
100
100
100
100
100
100

9.
.04
.04
.05
.05
.05
.05
.05
.05
.05
.05

O 0O OO OO

04

O 0O OO OO

<dbl>
.0219
.0247
.0255
.0267
.0281
.0293
.0305
.0315
.0324
.0329
.0332



Example - market yield curve

time price of €1 spot rate

1 1 0.9785475 2.169%
2 2 0.9522118 2.448%
3 3 0.9269405 2.529%
4 4  0.8994891 2.648%
5 5 0.8693488 2.800%
6 6 ©0.8390086 2.926%
7 /7 0.8074717 3.055%
8 8 0.7765943 3.160%
9 9 0.7453737 3.265%
106 10 0.7180624 3.312%
11 11 0.6922223 3.344%
12 12 0.6669583 3.375%
13 13 0.6423107 3.405%



Yield curve estimation -
bootstrapping

e Assumeyou havebonds: =1,...,n.

e Bond nr.: matures at time t;, pays coupon ¢; and its current
market price is B;.

e All bonds have principal 1.
1. Solve for the first bond

B
1+ ¢

— eyt

By = (1+c1)P(t1) = P(t1) =



Yield curve estimation -

bootstrapping
2. Solve for each subsequent bond
B = cm)iy Plti)+ (1+cn) P(tn)
known unknown

Bm_m @_lpi
= Pltn) = T = e



Present value sensitivity

Let’s assume we have

= afuture cash flow {C(¢) : t > 0};

= the currentyield curve {y(¢) : t > 0}.

The present value of the cash flow is

B(y) = /OOO e YWtdC(t)

How will the PV of B change if the yield curve changes?

The easy answer: Calculate it!

The traditional answer: Fstimate itl



Duration and convexity 1

e The derivative of the PV with respect to a uniform shift in the
entire yield curve is

1 o0 _ o0 A
B) = lim ( / e~ WO+ADE GO () / e VDt GC(t)
Ay—0 Ay 0 0 )

e The first and second derivative of the PV are

B'(y) = — /0 te Y 4C(t), B'(y) = — /O t2e Y 4O (t)



Duration and convexity 2



e Usingthe Taylor expansion we approximate the changein
present value if the yield curve shifts:

Bly+ A7)~ B(y) ~ B)AG + , B'(1)(A5)

e Define duration of the cash flow as

D = D(y) = —B'(y)/B(y)

e Define convexity of the cash flow as

C =C(y) = B"(y)/B(y)



Duration and convexity 3

e Rewrite the Taylor expansion in the following way:

B(y + Ay) — B(y)
B(y)

~ —D(y)Ay + ;O(y)(Az})2

e |n words: One can approximate the relative change inthe
PV of the cash flow when the yield curve is shifted uniformly

by a small amount.
= To first order: minus the yie

s To second order: Same as a

d change Ay, times duration.

bove, plus the squared yield

change times one-half convexity.



Example PV Sensitivity 1

Consider a bond with face value of €100, maturity of 5 years
and yearly coupons of 5%.

duration convexity
1 4.567348 21.98331

e We will value it under market assumptions (€110.07) and
estimate the effect of a parallel yield perturbation:

= increase of 1% - 1st. order €105.04, 2nd order €105.16.
= decrease of 1% -1st. order €115.09, 2nd order €115.22



Properties of duration and convexity 1

e The duration and convexity of a zero-coupon bond payable

at time taretandt?, independent of the yield.

e Duration and convexity decrease when the yield

Increases.

e For a given duration, convexity increases with the dispersion

of the flow, because

I 2 -y(t)t _
By [, (¢~ D) e = o

#
Dispersion, similar to variance

— D*(y)



Properties of duration and convexity 2

e The duration/convexity approximation is an easy way to
estimate the sensitivity of a cash flow’s PV to small
changes in the yield curve.

e The average duration/convexity of a portfolio is the PV-
weighted average of the constituent durations/convexities.
This makes those quantities easy to use.

e The duration/convexity approximationisvalid only when
thereis a parallel shiftin theyield curve.



Properties of duration and convexity 3

e The duration/convexity approximation does not tell us what
change in the present value to expect, should different parts
of the yield curve change by different amounts or even in
different directions.



Different concepts of duration

Macaulay Duration: The time weighted PV divided by the
PV.

Modified Duration: Macaulay Duration divided by
1 4+ i(n)/n, where n is the compounding frequency.

Effective Duration: Calculated by shocking the yield curve
up and down by some change in PV.

Dollar Duration: DD(y) = —B'(y) = B(y)D(y)
Dollar Convexity: DC(y) — B”(y) — B(y)C(y)



